

FINING Juice fining with vegetal proteins

Bastien NAZARIS

Development & Innovations Department Manager, Laffort France.

&

Shaun Richardson

General Manager, Laffort USA

Concept – "Longevity in Wine"

- Current release wines sold in tasting rooms are vintages 2019 and 2020!
- Need to keep wines fresh, and preserve aromatics.
- Bordeaux white wines are primarily Sauvignon Blanc & Semillon.

Early Fining of White & Rosé wines

Certified vegan wines may carry this label Trend towards vegan, allergen-free, & plastic free

Fining, what is the goal?

Turbidity reductionRemove particles that make a haze

Elimination of phenolic compounds

- Reduce astringent tannins & bitterness
- Reduce oxidizable phenolic compounds → aromatic potential preservation

Organoleptic correction & preservation.

Elimination of vegetal notes, oxidative notes, etc.

Coloring mater stabilization

TURBIDITY REDUCTION

- 1. Flocculation
- 2. Sedimentation
- 3. Clarification

Initial turbidity

- ✓ Flocculation capacity depends on the nature and dose of the fining agent and wine
- High flocculation is not associated with a faster clarification rate

✓ The sedimentation rate and the clarification rate depend on the size and weight of the flocculate

Zeta potential and particle size

TURBIDITY REDUCTION

ZETA POTENTIAL

Protein fining agents

Fining agent with a FAST speed of sedimentation

The aggregates are large and heavy

A fining agent that produces rapid clarification will produce a larger volume of lees.

FINING – Eliminating Phenolic Compounds

1. Avoid the formation of quinones that can trap the aromas of the wine

- 2. Removal of oxidized phenolic compounds
 - 3. Reduce astringency
 - 4. Remove bitterness notes

Remember this reaction?

FINING – Eliminating Phenolic Compounds

N.B.

Thiols are mainly synthesized during the 1st 1/3 of AF!
Need to eliminate oxidized and oxidizable compounds as soon as possible!

Early fining is so important!

- Treat the juice before the fermentation esters are developed.
- Remove the oxidizable phenolics and stop the chain reaction of quinone formation.
- Gives longevity to wines.
- Ability to use less SO2 in winemaking process.
- Potentially more active glutathione in wine after fermentation.

Removing polyphenols = organoleptic correction

FINING & AROMATIC PRESERVATION

Allows the preservation of the aromatic potential while preventing the browning of the wines post-fermentation.

- This is achieved by the early elimination of reactive and oxidizable phenolic compounds.
- This practice is widely used in Europe for all the so-called "aromatic" wines.
- Wines more stable and less reactive to oxygen.

In the early 2010s, LAFFORT research and development team played a huge role in the wine industry's adoption of fining during fermentation, especially for Rosé wines.

FINING ANALYSIS – is it working?

Measuring Aromatic Compounds for Trials

- Perception threshold to show the level of impact on the aroma profile.
- The reactivity of quinones & thiols is variable according to the oxidizable nature of the thiols.
- Analysis is important for the classification of the processes, but the tasting (sensory) must remain the most important (interactions perceptions, structure, acidity...)

Non-animal, non-GMO proteins.

PURE VEGETABLE PROTEINS

DIFFERENT FORMULATIONS ADAPTED TO EACH SITUATION.

VEGEFLOT®

Potato & Pea - with a high flocculation capacity, specifically developed for flotation.

- Rapid flotation speed
- Stable flotation cap.
- Good compaction of the foams (low percentage of lees).

VEGEMUST®

Potato & pea - with a high flocculation capacity, suitable for cold settling and fining in fermentation.

- Rapid sedimentation rate.
- The presence of patatin efficiently participates in reducing compounds that are a potential source of oxidation.

VEGEFINE®

Potato proteins for fining wines and musts.

- Versatile and utilizable on a wide range of musts and wines with high levels of oxidized and oxidizable polyphenols.
- Extremely effective on wine for organoleptic refining.

VEGECOLL®

Pure Patatin – one specific Potato protein

- A high native protein concentration and a very high Zêta potential make it one of the most reactive proteins in juice and wine.
- Low dosage, very efficient and gentle.

POLYMUST® Range – specific formulations

Make the most of the synergy between raw materials through different formulations adapted to each situation

Pea + Bentonite

- Ensures must and wine clarification
- Excellent lees compaction
- Contributes to early protein stabilization

PVPP + Pea

- Phenolic fining preventing pinking and oxidation.
- Prevents quinone formation that can trap aromas and alter the color.

Potato + PVPP + Bentonite

- Removes oxidizable and oxidized phenolic compounds.
- Protects musts and their aromatic precursors.
- Eliminates bitterness in wines.
- Good for red wine fining

PVPP + Potato

- Decreases the phenolic compounds content.
- Ensures hue stabilization by eliminating oxidized polyphenols.
- Keep your Rose pink!

How to make your choice?

- 1. There are no wrong choices but right choices.
- 2. In my process, do I want to work with 100% vegetable protein or with mixes?
- 3. If I choose the mixes, can I work with PVPP or not?
- 4. I can make my choice according to the juice or wine application.
- 5. Talk with my Laffort tech rep to narrow down my choices.

